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Abstract

Time series of vegetation indices (VI) derived from satellite imagery provide a consis-
tent monitoring system for terrestrial plant systems. They enable detection and quan-
tification of gradual changes within the time frame covered, which are of crucial impor-
tance in global change studies, for example. However, VI time series typically contain
a strong seasonal signal which complicates change detection. Commonly, trends are
quantified using linear regression methods, while the effect of serial autocorrelation
is remediated by temporal aggregation over bins having a fixed width. Aggregating
the data in this way produces temporal units which are modifiable. Analogous to the
well-known Modifiable Area Unit Problem (MAUP), the way in which these temporal
units are defined may influence the fitted model parameters and therefore the amount
of change detected. This paper illustrates the effect of this Modifiable Temporal Unit
Problem (MTUP) on a synthetic data set and a real VI data set. Large variation in
detected changes was found for aggregation over bins that mismatched full lengths
of vegetative cycles, which demonstrates that aperiodicity in the data may influence
model results. Using 26 yr of VI data and aggregation over full-length periods, devia-
tions in VI gains of less than 1 % were found for annual periods, while deviations (with
respect to seasonally adjusted data) increased up to 24 % for aggregation windows of
5yr. This demonstrates that temporal aggregation needs to be carried out with care in
order to avoid spurious model results.

1 Introduction

Vegetation systems provide a quick and measurable response to many environmen-
tal changes at a wide range of spatial and temporal scales. The availability of his-
torical time series from satellite observations with daily global coverage makes opera-
tional monitoring of vegetation condition a matter of detecting and interpreting changes
within these datasets. Change detection, however, is often complicated by a number
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of statistical preconditions that are intrinsic to time series of spectral vegetation in-
dices with dense sampling intervals. A frequently used approach for detecting temporal
trends is to fit linear regressions of a vegetation index (V1) against time, but this needs to
be done with care in order to avoid spurious trends. The detected slope coefficient (or
gain) can be used to calculate the amount of change, but it is not always tested for sig-
nificant deviation from zero, nor are standard statistical assumptions always respected
(de Beurs and Henebry, 2005). Seasonal variation, for instance, is an important cause
for the data to violate assumptions like homogeneous variation and absence of serial
correlation in the residuals. This is typically remediated using temporal aggregation,
where the aggregation window (or bin size) corresponds to the length of a calendar
year. The resulting bins can be regarded as temporal units, which, like spatial units,
are modifiable (Taylor, 2010). In case of spatial units, it has been demonstrated that
the size may influence the model results, which is known as the Modifiable Area Unit
Problem (MAUP) (Openshaw and Taylor, 1979). This problem may affect a myriad of
spatial studies in geography (Dark and Bram, 2007) and remote sensing (Marceau
et al.,, 1994). Similarly, there is a Modifiable Temporal Unit Problem (MTUP) that is
as troublesome as the MAUP. In analysis of time series of satellite vegetation indices
this problem is often disregarded, although it may result in misjudgements of temporal
trends in the data. Aspects of the problem include the starting phase of a time series
or segment, its extent and the level of temporal aggregation. The aim of this paper
is to demonstrate possible MTUP effects in analysis of time series of satellite imagery
using both real and simulated VI data and to provide, in this sense, a framework for
time series regression.
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2 Data and methods
2.1 Trend analysis and the modifiable temporal unit problem

Many trend analysis methods exist, including parametric and non-parametric ap-
proaches. The most common method to detect changes in cyclic time series is the
use of a linear model (Eqg. 1) obtained from ordinary least-squares (OLS) regression.
The slope coefficient or gain B is used to calculate the change in Y as @ times the
number of bins. This number is determined by the aggregation level (or: number of ob-
servations per bin), which is equivalent to the sample interval. Given that the datasets
consist of 24 observations per year, aggregation level 24 corresponds to yearly bins
and so on.

E(Y[T)=a+Bxt (1)

The dependent variable Y can be any kind of VI or cyclical environmental parameter in
general. The most common spectral vegetation indices are based on the rapid change
in reflectance of chlorophyll between the red and near infrared (NIR) ranges. Here,
we used the Normalized Difference Vegetation Index (NDVI), which is a commonly
used proxy for terrestrial photosynthetic activity. A decrease over time is referred to as
browning, whereas an increase indicates greening (de Jong et al., 2011).

Given this, we used a three-step approach to demonstrate the MTUP effect:

1. The influence of starting phase and data extent is illustrated using a perfectly
harmonic model, without trend or noise components. Using a sample size of 24
observations per cycle this implies that the model residuals are far from indepen-
dent, which invalidates linear regression by OLS. However, it provides a theoreti-
cal scenario to demonstrate our point that spurious slopes can be detected from
cyclical data.
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2. Next, the sample was aggregated into bins of fixed size. These bins represent
different temporal units (or aggregation levels). The MTUP effect is demonstrated
by calculating the change in NDVI from linear models (Eq. 1) fitted for different
bin sizes. The minimum number of bins over the full length of the synthetic time
series was set to 5.

3. Finally, step 2 was repeated using real data from Advanced Very High Resolu-
tion Radiometer (AVHRR) sensors. The detected changes were compared to the
corresponding change obtained using seasonally adjusted data without temporal
aggregation. The seasonal adjustment was carried out using a Fourier method
(Roerink et al., 2000) with four components, following de Jong et al. (2011). The
significance of the slopes in the seasonally adjusted data was assessed using
generalized least-squares (GLS) in order to account for remaining short-lag se-
rial correlation. A sample of 1000 pixels was used for calculation of deviations
introduced by the MTUP and the state of Queensland in north-eastern Australia
was used to illustrate possible spatial patterns introduced by different temporal
aggregation schemes.

Provided that the level of serial autocorrelation can be disregarded after aggrega-
tion, the significance of the detected trends can be tested using analysis of variance
(ANOVA) with the hypotheses HO: 6 =0 and HA: B # 0. All analyses were performed
using standard R functionality (R Development Core Team, 2011).

2.2 Time series data

Synthetic time series were used to illustrate the effect of cyclic data on regression

analysis. For this purpose, model parameters were chosen in such a way that they

approximate the AVHRR time series described below for a temperate (non-forest) en-

vironment with a single growing season. As such, the peak-to-peak amplitude (2A)

was set to 0.6 — with a mean of 0.4 — and the number of observations per year to 24.

NDVI (Y) was simulated using a cosine model with no underlying positive or negative
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trend (EqQ. 2a), in which a denotes the amplitude, time (¢) the radians equivalent of the
observation number (x) (Eq. 2b) and ® the phase shift.

y=y+axcos(t+®P) (2a)
t=x/24x2m (2b)

The longest run of NDVI measurements is available from AVHRR sensors on board
a series of National Oceanic and Atmospheric Administration (NOAA) satellites. Ac-
quisition started in 1981 and is still on-going, but pre-processed datasets are for now
available until the year 2006. Pre-processing includes correction for orbital decay, satel-
lite changes and several atmospheric effects. The resulting NDVI values were aggre-
gated into biweekly composites with ~8 km spatial resolution. The full description of
the dataset and the processing steps is provided by Tucker et al. (2005). A sample
of 1000 pixels was used for the MTUP analysis. Other vegetation indices, including
the Enhanced Vegetation Index (EVI) or the Soil Adjusted Vegetation Index (SAVI),
have similar statistical characteristics and therefore the problem described here is not
restricted to NDVI.

3 Results and discussion
3.1 Synthetic data

In case of seasonal data with a dense sampling interval, both starting phase and extent
influence the linear model. Figure 1a demonstrates that a fit on a perfectly harmonic
model without linear trend resulted in a range of slope coefficients — positive or nega-
tive, varying with the starting phase — but never zero. Zero slopes are obtained only
if both sides of a minimum or a maximum are equally sampled. This might, however,

result in over- or underestimation of the mean NDVI (Y) from the model intercept (@).
The slope coefficient is linearly related to the amplitude used for the seasonal model
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and is inversely related to the extent of the time series (or segments). The latter is
illustrated in Fig. 1b, which shows 4 different extents (respectively 2, 4, 6 and 8 yr) and
the associated linear models for a given starting phase.

The slope coefficient changed with the level of temporal aggregation, which influ-
enced the detected change in NDVI. This is illustrated in Fig. 2 using a similar synthetic
data set as above but now having a length of 26 full cycles, which is comparable to
that of AVHRR data sets. The variation in detected NDVI change increased with the
level of aggregation, which resulted in larger uncertainty in model predictions. The true
change in NDVI (i.e. zero) is only obtained by aggregation over complete cyclic periods,
i.e. 1 or more years. Given the perfect periodicity of this synthetic example, this is true
by definition, but in reality calendar years may not fit the periodicity of VI time series
because of shifts in vegetation phenology and variations in growing season length. For
this reason, the same analysis was also performed on real AVHRR time series (see
Sect. 3.2).

As mentioned, the starting phase and extent influence each segment of the linear
analysis. The effect reduces with longer extents, but it appeared that the change for
the longest available run of NDVI data (AVHRR) is of the same magnitude as changes
found by trend studies which account for seasonality (e.g. de Jong et al., 2011; Wang
et al., 2011; Zhou et al., 2001). Table 1 lists the calculated changes in NDVI for a
perfectly periodic model without trend component (Fig. 1) for time spans of AVHRR
(26yr), MODIS (11yr) and 1yr. The seasonal peak-to-peak amplitude was set to 1
for ease of comparison to other amplitudes. Given that the order of maximum change
found in literature is ~4.0 x 1072 for AVHRR data, trends induced by phase shift might
introduce errors varying from 10 % to 90 % if seasonality is not accounted for.

3.2 AVHRR data

An example of the MTUP effect for an AVHRR pixel with a significant (p < 0.05) trend
component is shown in Fig. 3. The change in NDVI was found to vary among aggre-
gation levels: slight differences with respect to seasonally adjusted data occurred for
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1 or 2-yr windows and substantial differences for all other cases. This illustrates that
aperiodicity in the data or in the aggregation window might result in considerable de-
viations from the change in NDVI found using seasonal correction instead of temporal
aggregation.

If temporal aggregation is used to account for seasonality, the characteristics of the
commonly used harmonic functions dictate the use of whole periods as aggregation
windows, in order to force the deviation in slope coefficient to zero (Fig. 2). Aiming for
bins holding complete seasons, the MTUP analysis was carried out on AVHRR data
for aggregation levels of exactly 1 to 5 calendar years. It appeared that the significant
changes in NDVI (i.e. significant for all aggregation levels) varied considerably with
respect to trend analysis with seasonal adjustment instead of temporal aggregation.
Table 2 lists the mean deviation and mean absolute deviation for the AVHRR sample
and for the example in Fig. 3. This table shows that the mean deviation and the vari-
ation for the sample are low (around 1 %) for fine aggregation levels but considerably
higher in case of coarser aggregation: a mean absolute deviation of 24 per cent was
found for 5-yr aggregation. In few cases the detected change in NDVI switched be-
tween positive (greening) and negative (browning), although these trends could not be
confirmed using significance tests. It was almost exclusively found that the amount of
detected change increased with the level of aggregation, so greening and browning
trends appeared stronger after aggregation. Figure 4 illustrates this by showing spatial
patterns of deviations for the state of Queensland in Australia. Spatial patterns are
hardly perceivable at fine temporal aggregation levels, but they become apparent at
coarser levels.

Temporal aggregation will only lead to unbiased estimates of VI trends if the following
requirements are met:

1. The regarded time series is perfectly periodic. Any type of aperiodicity, including
phase shift or incomplete periods at the start or end, may result in incorrect model
parameters.

8552

BGD
8, 8545-8561, 2011

Time series of
vegetation indices

R. de Jong and S. de

Bruin
Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/8/8545/2011/bgd-8-8545-2011-print.pdf
http://www.biogeosciences-discuss.net/8/8545/2011/bgd-8-8545-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

2. The aggregation level corresponds exactly to the period of the seasonal signal
(often one calendar year). Aggregating over multiple periods increases the risk of
MTUP effects.

Other analysis methods may implicitly require similar conditions. For example, non-
parametric trend tests such as the seasonal Mann-Kendall method (Hirsch and Slack,
1984) rely strongly on the absence of seasonal changes. In case of vegetation indices,
this assumption often renders the method unsuitable for large spatial and temporal
scales (de Jong et al., 2011). The results from this study indicate that similar effects
may disturb linear regression. The effects, however, may not be as conspicuous be-
cause parametric models are less robust against this type of error than non-parametric
models (McBride and Loftis, 1994). Seasonally adjusting the data using a decompo-
sition method (e.g. Cleveland et al., 1990) provides another approach for eliminating
serial autocorrelation and the MTUP. In that case, the seasonal model used should be
appropriate for the growing regime and ideally should take possible seasonal changes
into account. An example of such an approach is provided by Verbesselt et al. (2010).

Using OLS regression, trends may be found significant at a given aggregation level
while not at another level. False positives (trend is found to be significant while it is not
in reality) are likely to occur more frequently at low aggregation levels, but examples of
the opposite case were found as well (not shown). If the significance of trends is not
considered in the analysis, the MTUP may not only affect the gain but also the sign of
detected changes in NDVI.

4 Conclusions

Ordinary least squares (OLS) time series regression can be used to quantify trends in
cyclic data but temporal aggregation needs to be carried out carefully in order to avoid
spurious results. The risk of artefacts is minimal at an aggregation level correspond-
ing to a full period, for instance a calendar year. Coarser aggregation levels tend to
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overestimate the amount of change and result in higher variation in model predictions,
especially from 3 periods onwards. However, the use of a full-period window may be
impractical because VI time series are hardly ever free of changes in seasonality. Ape-
riodicity within long-term time series of vegetation indices is intrinsic to certain land
cover types and may arise from variations in start and length of growing seasons as
a result of variations in temperature and/or precipitation. The starting phase and the
choice of aggregation level — or temporal unit — affect the estimation of model parame-
ters, including the slope coefficient or gain. In this study, the amount of absolute change
that was attributed to the modifiable temporal unit problem (MTUP) varied between 1 %
and 24 % for full-period aggregation levels.
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Table 1. Detected changes in NDVI using linear regression on synthetic seasonal data for
different starting phases and extents. Change values were calculated as the slope coefficient 8
(Eq. 2) times the length of the time series and were multiplied by 100 for numerical convenience.
The listed lengths of 26 yr and 11 yr correspond to the length of AVHRR and MODIS time series
respectively. The applied harmonic model had peak-to-peak amplitude 1 and therefore change
values can be multiplied by the actual amplitude.

phase shift
(months)

change in NDVI * 100

1.5

4.5

7.5

10.5

26yr  11yr 1yr

-048 -1.14 -12.52
2.24 5.30 58.40
3.65 8.63 95.11
2.92 6.91 76.11
0.48 1.14 12.52

-2.24 -530 -58.40

-3.65 -8.63 -95.11

-2.92 -6.91 -76.11
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Table 2. The MTUP effect for a sample of 1000 AVHHR pixels and aggeregation levels (AL) of 1
to 5yr. Detected changes in NDVI (dNDVIagg) were compared to those found using seasonally
adjusted data (dNDVIref) and listed as dNDVIagg—dNDVIref (dANDVI), dNDVIagg/dNDVIref (pct)
and square root of the sample variation of pct (sd). The last columns list the detected changes
in NDVI for the pixel in Fig. 3. In all cases, NDVI values were multiplied by 100 for numerical

convenience.

AL (yr) mean deviation mean absolute deviation Fig. 3

dNDVI pct sd dNDVI pct sd NDVI pct

0 2.75

1 0.015 1005% 1.6% 0.044 101.0% 1.3% 2.77 2.0%

2 0.019 100.6% 3.0% 0.084 1022% 22% 2.89 14.0%

3 -0.016 1024% 9.0% 0.264 107.2% 5.8% 296 21.0%

4 0.022 105.4% 15.7% 0.469 1129% 10.5% 347 72.0%

5 0.066 106.6% 31.4% 0.950 1241% 21.1% 228 -47.0%
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Fig. 1. The effect of phase shift (a) and extent (b) on linear regression of NDVI against time
for seasonal data. The legend in (a) shows the phase shift in months. In (b), the colors each
represent an additional extent of 2 yr. Accordingly, magenta, green, blue and red refer to extents

of 2, 4, 6 and 8 yr respectively.
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Fig. 2. Change in NDVI detected using linear models depending on the temporal aggregation
level. The plot illustrates the MTUP effect for a harmonic model of 26 yr (length of common
AVHRR datasets) and an amplitude of 0.6 NDVI units. The points shown are the ones that
resulted in a change in the number of bins, while increasing the aggregation level. The vertical
dotted lines indicate aggregation levels corresponding to 1, 2, 3, 4 and 5 yr respectively and the
grey line shows a LOESS curve indicating an average trend.
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Fig. 3. Change in NDVI detected using linear models depending on the temporal aggrega-
tion level. The plot illustrates the MTUP effect for an AVHRR pixel with significant (p < 0.05)
trend component (location: 46.21°N/110.65° E, Montana, USA). See the caption of Fig. 2 for
additional information and Table 2 for the NDVI values corresponding to full-year aggregation
levels.
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Fig. 4. Detected changes in NDVI for different levels of temporal aggregation — example for
Queensland (Australia). The top-left map shows the location of Queensland and the 5 panels
show the change in NDVI with respect to changes found using seasonal adjustedment without
temporal aggregation. The aggregation levels correspond to 1, 2, 3, 4 and 5yr, respectively.
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